Paper
October 19, 2021
GOOML optimisation software
A New Modeling Framework for Geothermal Operational Optimization with Machine Learning (GOOML)
Buster, G.; Siratovich, P.; Taverna, N.; Rossol, M.; Weers, J.; Blair, A.; Huggins, J.; Siega, C.; Mannington, W.; Urgel, A.; Cen, J.; Quinao, J.; Watt, R.; Akerley, J.
Journal paper. Energies. Presenting GOOML: a new framework for Geothermal Operational Optimization with Machine Learning. It takes a hybrid data-driven thermodynamics approach, integrating digital twins into geothermal operations for significant improvements in operational efficiency.
More Information >>
Download